PHP — Theory (Exam-Focused)

1) Basics & Syntax

e PHP runs on server; files end with .php.

e Code blocks: <?php ... 2>
. EChO@HHﬁ:echo "Hi"; /print ("Hi");
e Comments: //, #, /* ... */

e Case-sensitive for variables; functions are not.

2) Variables, Types, Constants

e Sx = 10; $name = "A"; S$flag = true;

o Types: int, float, string, bool, array, object, resource, null.
e Dynamic typing; var dump ($x) shows type.

e Constant: define ('PI', 3.14); Or const PI = 3.14;

3) Operators & Control Flow

e Arithmetic, comparison (== vs ===), logical (s, | |, !), null coalescing 22, spaceship
<=>,
e if/elseif/else, switch, match (PHP 8), loops: for, while, do...while, foreach.

4) Strings & Arrays

[SUﬁngihncs:strlen,strtolower,strpos,substr,strireplace,trim,explode,
implode.

e Arrays: indexed, associative, multidimensional.

[}\HayfhnCSZcount,arrayipush,arrayimerge,arrayimap,arrayifilter,

array reduce, sort, ksort, usort.

5) Functions & Scope

e function add($Sa, $b = 0): int { return $a + S$b; }
e Pass by value/ref: function f (&$x) {}

e Anonymous fn/closures: sf = fn($x) => $x*$x;

° huﬂudeﬁequheiinclude,require,*ionce.

6) Superglobals & Forms
e $ GET,$ POST, $ REQUEST, $ SERVER, $ FILES, $ SESSION, $ COOKIE, $ ENV.

e Validate & sanitize: filter input (INPUT POST, 'email',
FILTER VALIDATE EMAIL).

7) Sessions & Cookies

. Sesﬁonisession_start(); $ SESSION['user']='A';
e Cookie: setcookie ('token', 'abc', time()+3600, '/');

8) Files & Uploads

° RﬁadﬁNrﬁeZfileigeticontents,fileiputicontents,fopen/fgets/fwrite.
e Uploads: $ FILES['file']['name/temp name/size'], move via
move uploaded file.

9) OOP in PHP

e (lass, object, visibility: public/protected/private

e Inheritance, final, static, abstract classes & interfaces, traits (use LogTrait;).
e Namespaces & autoload (spl autoload register).

° hﬁagk:nnﬁhods:47construct,47destruct,47get,4iset,47toString.

10) PDO & MySQL (Prepared)

Spdo = new PDO('mysgl:host=localhost;dbname=test', 'root',"'', [
PDO: :ATTR ERRMODE=>PDO: : ERRMODE EXCEPTION

1)

$stmt = $pdo->prepare ("SELECT * FROM users WHERE email = ?");
$stmt->execute ([Semail]) ;

$rows = $stmt->fetchAll (PDO::FETCH ASSOC) ;

11) Errors & Exceptions

e try { ... } catch (Exception $e) { echo $e->getMessage(); } finally
{}
. ErﬂHWCVeB,error_reporting(E_ALL); ini set('display errors',1);

12) Dates/Times

e date('Y-m-d H:i:s'), DateTime, DateInterval, DateTimeZone.

13) Security Essentials

e SQLi — use prepared statements.

e XSS — escape output (htmlspecialchars).

e CSRF — tokens in forms.

[PaS$NOHB-—>passwordihash,passwordfverify

o File upload validation (mime, size, extension).

o Disable dangerous functions in production; least-privilege DB user.

14) Composer & PSR

e composer init, composer require monolog/monolog.

e PSR-4 autoload in composer.json

15) PHP 8+ Sweet Stuff

e Union types function f (int|float $x) {},
e Attributes # [ORM\Entity],

o Constructor property promotion,

e Nullsafe 2->,

e match expression.

25 PHP PYQs with Answers (Part 1 of 100)

Q1. Difference between echo and print?

Ans: Both output strings. echo is slightly faster and can take multiple args; print returns 1
(usable in expressions) and takes one arg.

Q2. What is the output type of var dump ()?

Ans: It prints (doesn’t return) detailed type & value info of variables.

Q3. Show how to define and use a constant.

<?php
define('APPiNAME','MyApp');
const VERSION = '1.0"';

echo APP NAME.' v'.VERSION;

Q4. Explain == vs ===.

Ans: == compares values with type juggling; === compares value and type (strict).

QS. Write a function with default arg and return type.

function greet (string $name = 'Guest'): string {
return "Hello, S$name";

}

Q6. Create and iterate an associative array.

Smarks = ['Ali'=>88, 'Bea'=>92];
foreach (Smarks as S$Sname=>$m) echo "$name: Sm\n";

Q7. Convert CSV string to array and back.

$s = "red,green,blue";
Sarr = explode(',', Ss);
Sback = implode(';', S$arr); // "red;green;blue"

Q8. Sort an associative array by keys ascending.

Sprices = ['b'=>20,'a'=>10, 'c'=>30];
ksort (Sprices);

Q0. Filter array to keep even numbers only.

Snums [1,2,3,4,5,01;
$even = array filter ($nums, fn ($x)=>$x%2===0);

Q10. What is a closure? Example.

Smult = 3;
Sf = function($x) use (Smult) { return $x*Smult; };
echo $f£(5); // 15

Q11. Sanitize and validate email from POST.

Semail = filter input (INPUT POST, 'email', FILTER SANITIZE EMAIL);
if (!filter var($email, FILTER VALIDATE EMAIL)) { /* invalid */ }

Q12. Start a session and store username.

session_start();
$ SESSION['user'] = 'nora';

Q13. Set & read a cookie for 1 hour.

setcookie ('theme', 'dark', time()+3600, '/'); // set
$theme = $ COOKIE['theme'] ?? 'light'; // read

Q14. Secure file upload (core steps).

if (isset($ FILES['pic']) && $ FILES['pic']['error']==UPLOAD ERR OK)
Stmp = $ FILES['pic']['tmp name'];
Sname = basename ($_FILES['pic']['name']);

Sext = strtolower (pathinfo (Sname, PATHINFO EXTENSION)) ;

$allowed = ['Jpg','png', 'webp'];
if (in array($ext,$allowed) && mime content type($tmp) === 'image/png') {
move uploaded file(Stmp, @ DIR ."/uploads/$name");

}

Note: Check size, MIME, generate random filename, never trust client name.

Q15. Simple class with constructor & method.

class Box {

public function _ construct (private int $w, private int $h) {}
public function area(): int { return S$this->w * S$this->h; }

}

echo (new Box(5,6))->area(); // 30

Q16. Interface and class implementation.

interface Logger { public function log(string Sm): void; }
class Echologger implements Logger {

public function log(string S$m): void { echo "[LOG] $m"; }
}

Q17. Use a Trait to share behavior.

trait Timestamps {
public function now(): string { return date('c'); }

}

class Post { use Timestamps; }

Q18. Connect to MySQL with PDO and insert safely.

Spdo = new PDO('mysqgl:host=localhost;dbname=app', 'user', 'pass');
Spdo->setAttribute (PDO: :ATTR _ERRMODE, PDO::ERRMODE EXCEPTION) ;
$stmt = $pdo->prepare ("INSERT INTO users (name,email) VALUES(?,?)");
Sstmt->execute ([Sname, Semail]) ;

Q19. Fetch all rows as assoc array.

Sstmt Spdo->query ("SELECT id,name FROM users");
$rows = $stmt->fetchAll (PDO::FETCH ASSOC) ;

Q20. Hash and verify passwords.

$hash = password hash(Splain, PASSWORD DEFAULT) ;
if (password verify($plain, $hash)) { /* ok */ }

Q21. Prevent XSS when outputting user input.

echo htmlspecialchars ($userInput, ENT QUOTES, 'UTF-8');

Q22. Generate a CSRF token and verify.

// Generate
session_start();

$ SESSION['csrf'] = bin2hex(random bytes(32));

// Include in form as hidden input

// Verify

if ('hash equals($ SESSION['csrf'], $ POST['csrf'] 2?2 '')) die('CSRF!'");

Q23. Use match (PHP 8) instead of switch.

Stype = 'pdf';
Smime = match (Stype) {

'png' => 'image/png',

'jpg', 'Jpeg' => 'image/jpeg’,

'pdf' => 'application/pdf’',

default => 'application/octet-stream'
}i

Q24. Autoload classes with sp1_autoload register.

spl autoload register (function($class) {

Spath = DIR .'/src/'.str replace('\\','/',Sclass).'.php';
if (file exists($path)) require Spath;
})s

Q25. Build a tiny JSON API endpoint.

header ('Content-Type: application/json');
Sdata = ['ok'=>true, 'time'=>date('c')];
echo json_encode($data);

Q26. How do you read a text file line by line in PHP?

$fp = fopen("data.txt", "r");

while (($line = fgets(Sfp)) !== false) {
echo $line."
";

}

fclose ($Sfp);

Q27. Write PHP code to append text to a file.

file put contents("log.txt", "New line\n", FILE APPEND);

Q28. Explain the difference between include and require.
Ans:

e include — gives a warning if file missing, script continues.
e require — fatal error if missing, script stops.

Q29. How to upload a file in PHP safely?

Steps:
1. Check $ rILES for errors.
2. Validate MIME type and size.
3. Generate a random filename.
4. Usemove uploaded file().

Q30. How do you check if a file exists?

if (file exists("config.php")) { include "config.php"; }

Q31. What is output buffering in PHP?

Ans: It stores output in memory before sending to browser.

ob start();
echo "Hello";
Scontent = ob _get clean(); // capture output

Q32. Show how to create JSON from an array.

Sarr = ["name"=>"Ali","age"=>21];
echo json encode ($arr);

Q33. How to decode JSON to array?

$json P '{"a":l,"b":z}';
$arr = Json decode($json, true);

Q34. How to redirect user to another page?

header ("Location: login.php");
exit;

Q35. Difference between cer and post methods?

e GET: data in URL, length limited, less secure.
e POST: data in request body, secure for forms, no size limit.

Q36. How to connect MySQLi (procedural)?

$conn = mysgli connect ("localhost","root","","test");
if (!$conn) die("Error: ".mysqgli connect error());

Q37. Difference between MySQLi and PDO?

e MySQLi — works only with MySQL.
o PDO — supports many databases, prepared statements, OO interface.

Q38. Perform a SELECT query using MySQLI.

$res = mysqgli query($conn, "SELECT id,name FROM users");
while (S$row = mysqgli fetch assoc($res)) {
echo Srow['id']." ".Srow['name']."
";

}

Q39. Perform UPDATE query with PDO prepared statement.

Sstmt = S$pdo->prepare ("UPDATE users SET name=? WHERE id=?");
Sstmt->execute (["Zara",5]);

Q40. How to handle exceptions in PHP?

try {

throw new Exception("Error found!");
} catch (Exception $e) {

echo $e->getMessage () ;
}

Q41. What is the difference between isset () and empty () ?

e isset ($x) — true if variable exists & not null.
e empty ($x) — true if variable not set or false/0/""/null.

Q42 Explain require_once VS include_ once.

e once ensures file is included only once, avoiding redeclaration errors.

Q43. Demonstrate PHP session destroy.

session_ start ()
session_unset ()
session_destroy

(

);

Q44. How to encrypt data with password hash()?

$hash = password hash ("mypwd", PASSWORD BCRYPT) ;

Q45. Generate a random secure token.

Stoken = bin2hex (random bytes (16));

Q46. Difference between mds () and password_hash()?

e md5 () — fast, insecure for passwords.
e password hash () — berypt/argon2, salted & secure.

Q47. How to handle file uploads larger than 2MB?

e Change php.ini — upload max filesize, post max size
o Always validate size in script.

Q48. Explain difference between == and === with example.

var dump (0 == "0"); // true
var dump (0 === "0"); // false (different types)

Q49. Explain MVC architecture in PHP.

e Model — data & business logic.
e View — presentation (HTML).

e Controller — handles requests, connects model & view.
Frameworks like Laravel, Codelgniter follow MVC.

Q50. Show use of namespaces.

namespace App\Utils;
class Helper { public static function greet(){ echo "Hi"; } }
\App\Utils\Helper::greet () ;

QS51. What are prepared statements and why are they important?

Ans:
Prepared statements separate SQL from data, preventing SQL injection and improving
performance for repeated queries.

Sstmt = S$pdo->prepare ("SELECT * FROM users WHERE email=?");
$stmt->execute ([Semail]) ;

Q52. How to paginate database results?

$limit = 10;

Spage = $ GET['page'] 2?72 1;

Soffset = (Spage-1)*S$limit;

$Sstmt = $pdo->prepare ("SELECT * FROM posts LIMIT ? OFFSET ?");
$stmt->bindvValue (1,$1imit, PDO: : PARAM INT) ;

$stmt->bindvValue (2, Soffset, PDO: : PARAM INT) ;
$stmt->execute () ;

Q53. How do you send email in PHP?

mail ("tol@example.com", "Subject", "Message", "From: melexample.com") ;

(In practice, use PHPMailer or SMTP for reliability.)

Q54. Explain difference between require and autoload.

e require — loads file explicitly.
o autoload — loads class automatically when used (via spl autoload register).

QS5S. Create a simple login script (concept).

if ($_SERVER['REQUEST_METHOD']=="'POST") {
Sstmt = S$pdo->prepare ("SELECT * FROM users WHERE email=?");
Sstmt->execute ([$ POST['email']]);
Suser = $stmt->fetch();
if (Suser && password verify($ POST['pass'], Suser['password']))
$_SESSION['uid']:$user['id'};
} else { echo "Invalid"; }

}

Q56. What are JWTs (JSON Web Tokens)?
Ans:

JWT is a compact, signed token used for authentication.
Structure: Header.Payload.Signature (Base64).

Q57. How to handle file download in PHP?

header ("Content-Type: application/pdf");
header ("Content-Disposition: attachment; filename=report.pdf");
readfile ("report.pdf");

QS58. What is Cross-Site Request Forgery (CSRF)?
Ans:

A malicious site tricks a logged-in user into performing unwanted actions.
Prevention: CSRF tokens, SameSite cookies.

Q59. How to prevent SQL Injection in PHP?

o Use prepared statements with 2 placeholders.
e Validate and sanitize input.

Q60. Explain difference between array merge () and + operator.

e array merge () — merges and reindexes keys.
e + — union of arrays; keys from left are preserved.

Q61. How to implement logout in PHP?

session start();
session_unset();

session_destroy();

header ("Location: login.php");

Q62. What is XSS (Cross-Site Scripting)?
Ans:

Injection of malicious scripts into webpages.
Prevention: htmlspecialchars (), CSP headers.

Q63. How do you upload multiple files?

foreach ($ FILES['photos']['tmp name'] as $i=>$tmp) {
move uploaded file($tmp, "uploads/".$ FILES['photos']['name'][$i]);
}

Q64. What is Composer in PHP?

Ans: Dependency manager for PHP.
Commands:

e composer init

e composer require vendor/package
e Autoload via vendor/autoload.php

Q65. Explain PSR standards.
Ans:
e PSR-1/2/12 — coding style.

e PSR-4 — autoloading standard.
e PSR-7 — HTTP messages.

Q66. What is MVC? Name PHP frameworks using it.
Ans:

MVC = Model View Controller architecture.
Frameworks: Laravel, Symfony, Codelgniter, Yii.

Q67. Explain PHP error levels.

e E NOTICE — mIinor issue.

e E WARNING — non-fatal.

E_ERROR — fatal.
Conﬁgierrorireporting(EiALL);

Q68. What is difference between unlink () and unset()?

e unlink("file.txt") — deletes file.
e unset (Svar) — deletes variable.

Q69. How to use Traits in PHP?

trait Logger { function log(S$m){ echo $m; } }
class Test { use Logger; }
Q70. Difference between abstract class and interface?

e Abstract class — can have implemented + abstract methods.
o Interface — only method signatures (until PHP 8, now may have defaults).

Q71. How to perform cURL request in PHP?

$ch = curl init ("https://api.example.com");
curlisetopt($ch, CURLOPT RETURNTRANSFER, true);
$res = curl exec(Sch);

curl close($ch);

Q72. Explain difference between public, protected, private.
e public — accessible everywhere.

e protected — within class & subclasses.
e private — within same class only.

Q73. Demonstrate exception chaining.

try {
try { throw new Exception ("Inner"); }
catch (Exception $e) { throw new Exception ("Outer",0,S$e); }

} catch (Exception $e) {
echo $e->getPrevious () ->getMessage(); // "Inner"

}

Q74. How to schedule jobs in PHP?

Ans: Use Cron jobs in Linux or Task Scheduler in Windows to run PHP scripts periodically.

Q75. How to handle JSON API request & response?

$data = json decode(file get contents ("php://input"), true);
header ("Content-Type: application/Jjson");
echo json encode (["ok"=>true, "received"=>$datal);

Q76. What is caching in PHP and why is it used?
Ans:
Caching stores frequently used data in memory/disk to reduce DB calls and speed up

response.
Examples: OPcache, Memcached, Redis.

Q77. How to enable OPcache in PHP?
Ans: In php.ini:

opcache.enable=1
opcache.memory consumption=128

Q78. Explain difference between session and JWT authentication.

Session — server stores session ID & data.
JWT — self-contained token stored on client; scalable for APIs.

Q79. How to secure a REST API in PHP?

e Use HTTPS

e JWT or OAuth 2.0 for auth

o Rate limiting

e Input validation & sanitization

Q80. How to implement file-based caching in PHP?

Skey = md5 ("pagel");

Scache = "cache/S$key.html";

if (file exists($cache) && time()-filemtime ($cache)<60) {
readfile ($Scache) ;
exit;

}

ob start();

// dynamic content

$html = ob get clean();

file put contents($cache, $html);

Q81. What is the purpose of .htaccess in PHP projects?

Ans: Configure Apache settings: URL rewriting, redirects, access control, error pages.

Q82. How to rewrite URLSs with .ntaccess?

RewriteEngine On
RewriteRule “product/ ([0-9]+)$ product.php?id=$1 [L]

Q83. Explain dependency injection in PHP.

Ans: Technique to provide required objects (dependencies) from outside rather than creating
them inside class. Improves testability & maintainability.

Q84. Demonstrate using PHP with AJAX.

// JS
fetch ("data.php") .then(r=>r.text ()) .then(console.loq);
// data.php

echo "Hello from PHP";

Q8S5. What are PSR-7 HTTP messages?

Ans: Standard interface for HTTP requests & responses (used in frameworks like Slim,
Laravel).

Q86. How to use PHP sessions across subdomains?

Set cookie domain:

session set cookie params(['domain'=>'.example.com']);
session start();

Q87. Explain PHP’s garbage collection.

Ans: PHP automatically frees memory of unused variables. Cyclic references are cleared by
Garbage Collector (enabled via gc_enable()).

Q88. How to implement role-based access control (RBAC)?

e Store user role in DB/session.
e Check before action:

if ($ SESSION['role']!=='admin') die("Forbidden");

Q89. What is a design pattern? Name a few in PHP.

Ans: A reusable solution to common problems in OOP design.
Examples: Singleton, Factory, Strategy, Observer, MVC.

Q90. Show example of Singleton in PHP.

class DB {
private static $inst;
private function _ construct() {}
public static function get () {
return self::$inst ??= new DB();
}
}

Q91. How to upload images and generate thumbnails?

Use GD/Imagick:

$img = imagecreatefromjpeg ("big.jpg");
Sthumb = imagescale($img,150,150);
imagejpeg (Sthumb, "thumb. jpg") ;

Q92. How to send JSON response with HTTP status?

http response code (201);
header ("Content-Type: application/json");
echo json_encode (["created"=>true]) ;

Q93. What is difference between REST and SOAP in PHP?

e REST — lightweight, JSON, stateless.
e SOAP — XMlL-based, strict, WS-* standards.

Q94. How to consume REST API in PHP?

Sres = file get contents ("https://api.github.com");

or with cURL for more control.

Q95. What is PHPUnit?

Ans: A unit testing framework for PHP. Used to test functions/classes automatically.

Q96. Show example PHPUnit test case.

class MathTest extends PHPUnit\Framework\TestCase {
public function testAdd() {
Sthis->assertEquals (4, 2+2);
}
}

Q97. How to handle environment variables in PHP?

Use .env file with viucas/phpdotenv package:

$dotenv = Dotenv\Dotenv::createImmutable(DIR);
$dotenv->load() ;
echo $ ENV['DB USER'];

Q98. What is difference between static and se1f in PHP?

e self:: — refers to current class only.
e static:: — late static binding (refers to subclass if extended).

Q99. How to deploy PHP app securely?

e Disable display errors in production.
e Use HTTPS.

e Apply least-privilege DB user.
e Harden php.ini (disable functions).
e Use firewall, WAF, monitoring.

Q100. Summarize PHP 8+ key features.

e Union types

e Nullsafe operator 2->
e Named arguments

e Attributes/annotations
e JIT compilation

e Match expression

