
PHP – Theory (Exam-Focused)

1) Basics & Syntax

 PHP runs on server; files end with .php.
 Code blocks: <?php ... ?>
 Echo/print: echo "Hi"; / print("Hi");
 Comments: //, #, /* ... */
 Case-sensitive for variables; functions are not.

2) Variables, Types, Constants

 $x = 10; $name = "A"; $flag = true;
 Types: int, float, string, bool, array, object, resource, null.
 Dynamic typing; var_dump($x) shows type.
 Constant: define('PI', 3.14); or const PI = 3.14;

3) Operators & Control Flow

 Arithmetic, comparison (== vs ===), logical (&&, ||, !), null coalescing ??, spaceship
<=>.

 if/elseif/else, switch, match (PHP 8), loops: for, while, do...while, foreach.

4) Strings & Arrays

 String funcs: strlen, strtolower, strpos, substr, str_replace, trim, explode,
implode.

 Arrays: indexed, associative, multidimensional.
 Array funcs: count, array_push, array_merge, array_map, array_filter,

array_reduce, sort, ksort, usort.

5) Functions & Scope

 function add($a, $b = 0): int { return $a + $b; }
 Pass by value/ref: function f(&$x){}
 Anonymous fn/closures: $f = fn($x) => $x*$x;
 Include/require: include, require, *_once.

6) Superglobals & Forms

 $_GET, $_POST, $_REQUEST, $_SERVER, $_FILES, $_SESSION, $_COOKIE, $_ENV.
 Validate & sanitize: filter_input(INPUT_POST, 'email',

FILTER_VALIDATE_EMAIL).

7) Sessions & Cookies

 Session: session_start(); $_SESSION['user']='A';
 Cookie: setcookie('token','abc', time()+3600, '/');

8) Files & Uploads

 Read/write: file_get_contents, file_put_contents, fopen/fgets/fwrite.
 Uploads: $_FILES['file']['name/temp_name/size'], move via

move_uploaded_file.

9) OOP in PHP

 Class, object, visibility: public/protected/private.
 Inheritance, final, static, abstract classes & interfaces, traits (use LogTrait;).
 Namespaces & autoload (spl_autoload_register).
 Magic methods: __construct, __destruct, __get, __set, __toString.

10) PDO & MySQL (Prepared)

$pdo = new PDO('mysql:host=localhost;dbname=test','root','',[
 PDO::ATTR_ERRMODE=>PDO::ERRMODE_EXCEPTION
]);
$stmt = $pdo->prepare("SELECT * FROM users WHERE email = ?");
$stmt->execute([$email]);
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);

11) Errors & Exceptions

 try { ... } catch (Exception $e) { echo $e->getMessage(); } finally
{}

 Error levels, error_reporting(E_ALL); ini_set('display_errors',1);

12) Dates/Times

 date('Y-m-d H:i:s'), DateTime, DateInterval, DateTimeZone.

13) Security Essentials

 SQLi → use prepared statements.
 XSS → escape output (htmlspecialchars).
 CSRF → tokens in forms.
 Passwords → password_hash, password_verify.
 File upload validation (mime, size, extension).
 Disable dangerous functions in production; least-privilege DB user.

14) Composer & PSR

 composer init, composer require monolog/monolog.

 PSR-4 autoload in composer.json.

15) PHP 8+ Sweet Stuff

 Union types function f(int|float $x) {},
 Attributes #[ORM\Entity],
 Constructor property promotion,
 Nullsafe ?->,
 match expression.

25 PHP PYQs with Answers (Part 1 of 100)
Q1. Difference between echo and print?

Ans: Both output strings. echo is slightly faster and can take multiple args; print returns 1
(usable in expressions) and takes one arg.

Q2. What is the output type of var_dump()?

Ans: It prints (doesn’t return) detailed type & value info of variables.

Q3. Show how to define and use a constant.

<?php
define('APP_NAME','MyApp');
const VERSION = '1.0';
echo APP_NAME.' v'.VERSION;

Q4. Explain == vs ===.

Ans: == compares values with type juggling; === compares value and type (strict).

Q5. Write a function with default arg and return type.

function greet(string $name = 'Guest'): string {
 return "Hello, $name";
}

Q6. Create and iterate an associative array.

$marks = ['Ali'=>88,'Bea'=>92];
foreach ($marks as $name=>$m) echo "$name: $m\n";

Q7. Convert CSV string to array and back.

$s = "red,green,blue";
$arr = explode(',', $s);
$back = implode(';', $arr); // "red;green;blue"

Q8. Sort an associative array by keys ascending.

$prices = ['b'=>20,'a'=>10,'c'=>30];
ksort($prices);

Q9. Filter array to keep even numbers only.

$nums = [1,2,3,4,5,6];
$even = array_filter($nums, fn($x)=>$x%2===0);

Q10. What is a closure? Example.

$mult = 3;
$f = function($x) use ($mult) { return $x*$mult; };
echo $f(5); // 15

Q11. Sanitize and validate email from POST.

$email = filter_input(INPUT_POST,'email',FILTER_SANITIZE_EMAIL);
if (!filter_var($email, FILTER_VALIDATE_EMAIL)) { /* invalid */ }

Q12. Start a session and store username.

session_start();
$_SESSION['user'] = 'nora';

Q13. Set & read a cookie for 1 hour.

setcookie('theme','dark', time()+3600, '/'); // set
$theme = $_COOKIE['theme'] ?? 'light'; // read

Q14. Secure file upload (core steps).

if (isset($_FILES['pic']) && $_FILES['pic']['error']==UPLOAD_ERR_OK) {
 $tmp = $_FILES['pic']['tmp_name'];
 $name = basename($_FILES['pic']['name']);

 $ext = strtolower(pathinfo($name, PATHINFO_EXTENSION));
 $allowed = ['jpg','png','webp'];
 if (in_array($ext,$allowed) && mime_content_type($tmp) === 'image/png') {
 move_uploaded_file($tmp, __DIR__."/uploads/$name");
 }
}

Note: Check size, MIME, generate random filename, never trust client name.

Q15. Simple class with constructor & method.

class Box {
 public function __construct(private int $w, private int $h) {}
 public function area(): int { return $this->w * $this->h; }
}
echo (new Box(5,6))->area(); // 30

Q16. Interface and class implementation.

interface Logger { public function log(string $m): void; }
class EchoLogger implements Logger {
 public function log(string $m): void { echo "[LOG] $m"; }
}

Q17. Use a Trait to share behavior.

trait Timestamps {
 public function now(): string { return date('c'); }
}
class Post { use Timestamps; }

Q18. Connect to MySQL with PDO and insert safely.

$pdo = new PDO('mysql:host=localhost;dbname=app','user','pass');
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$stmt = $pdo->prepare("INSERT INTO users(name,email) VALUES(?,?)");
$stmt->execute([$name,$email]);

Q19. Fetch all rows as assoc array.

$stmt = $pdo->query("SELECT id,name FROM users");
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);

Q20. Hash and verify passwords.

$hash = password_hash($plain, PASSWORD_DEFAULT);
if (password_verify($plain, $hash)) { /* ok */ }

Q21. Prevent XSS when outputting user input.

echo htmlspecialchars($userInput, ENT_QUOTES, 'UTF-8');

Q22. Generate a CSRF token and verify.

// Generate
session_start();
$_SESSION['csrf'] = bin2hex(random_bytes(32));
// Include in form as hidden input
// Verify
if (!hash_equals($_SESSION['csrf'], $_POST['csrf'] ?? '')) die('CSRF!');

Q23. Use match (PHP 8) instead of switch.

$type = 'pdf';
$mime = match($type){
 'png' => 'image/png',
 'jpg','jpeg' => 'image/jpeg',
 'pdf' => 'application/pdf',
 default => 'application/octet-stream'
};

Q24. Autoload classes with spl_autoload_register.

spl_autoload_register(function($class){
 $path = __DIR__.'/src/'.str_replace('\\','/',$class).'.php';
 if (file_exists($path)) require $path;
});

Q25. Build a tiny JSON API endpoint.

header('Content-Type: application/json');
$data = ['ok'=>true,'time'=>date('c')];
echo json_encode($data);

Q26. How do you read a text file line by line in PHP?

$fp = fopen("data.txt", "r");
while (($line = fgets($fp)) !== false) {
 echo $line."
";
}
fclose($fp);

Q27. Write PHP code to append text to a file.

file_put_contents("log.txt", "New line\n", FILE_APPEND);

Q28. Explain the difference between include and require.

Ans:

 include → gives a warning if file missing, script continues.
 require → fatal error if missing, script stops.

Q29. How to upload a file in PHP safely?

Steps:

1. Check $_FILES for errors.
2. Validate MIME type and size.
3. Generate a random filename.
4. Use move_uploaded_file().

Q30. How do you check if a file exists?

if (file_exists("config.php")) { include "config.php"; }

Q31. What is output buffering in PHP?

Ans: It stores output in memory before sending to browser.

ob_start();
echo "Hello";
$content = ob_get_clean(); // capture output

Q32. Show how to create JSON from an array.

$arr = ["name"=>"Ali","age"=>21];
echo json_encode($arr);

Q33. How to decode JSON to array?

$json = '{"a":1,"b":2}';
$arr = json_decode($json, true);

Q34. How to redirect user to another page?

header("Location: login.php");
exit;

Q35. Difference between GET and POST methods?

 GET: data in URL, length limited, less secure.
 POST: data in request body, secure for forms, no size limit.

Q36. How to connect MySQLi (procedural)?

$conn = mysqli_connect("localhost","root","","test");
if (!$conn) die("Error: ".mysqli_connect_error());

Q37. Difference between MySQLi and PDO?

 MySQLi → works only with MySQL.
 PDO → supports many databases, prepared statements, OO interface.

Q38. Perform a SELECT query using MySQLi.

$res = mysqli_query($conn,"SELECT id,name FROM users");
while ($row = mysqli_fetch_assoc($res)) {
 echo $row['id']." ".$row['name']."
";
}

Q39. Perform UPDATE query with PDO prepared statement.

$stmt = $pdo->prepare("UPDATE users SET name=? WHERE id=?");
$stmt->execute(["Zara",5]);

Q40. How to handle exceptions in PHP?

try {
 throw new Exception("Error found!");
} catch (Exception $e) {
 echo $e->getMessage();
}

Q41. What is the difference between isset() and empty()?

 isset($x) → true if variable exists & not null.
 empty($x) → true if variable not set or false/0/""/null.

Q42. Explain require_once vs include_once.

 _once ensures file is included only once, avoiding redeclaration errors.

Q43. Demonstrate PHP session destroy.

session_start();
session_unset();
session_destroy();

Q44. How to encrypt data with password_hash()?

$hash = password_hash("mypwd", PASSWORD_BCRYPT);

Q45. Generate a random secure token.

$token = bin2hex(random_bytes(16));

Q46. Difference between md5() and password_hash()?

 md5() → fast, insecure for passwords.
 password_hash() → bcrypt/argon2, salted & secure.

Q47. How to handle file uploads larger than 2MB?

 Change php.ini → upload_max_filesize, post_max_size.
 Always validate size in script.

Q48. Explain difference between == and === with example.

var_dump(0 == "0"); // true
var_dump(0 === "0"); // false (different types)

Q49. Explain MVC architecture in PHP.

 Model → data & business logic.
 View → presentation (HTML).

 Controller → handles requests, connects model & view.
Frameworks like Laravel, CodeIgniter follow MVC.

Q50. Show use of namespaces.

namespace App\Utils;
class Helper { public static function greet(){ echo "Hi"; } }
\App\Utils\Helper::greet();

Q51. What are prepared statements and why are they important?

Ans:
Prepared statements separate SQL from data, preventing SQL injection and improving
performance for repeated queries.

$stmt = $pdo->prepare("SELECT * FROM users WHERE email=?");
$stmt->execute([$email]);

Q52. How to paginate database results?

$limit = 10;
$page = $_GET['page'] ?? 1;
$offset = ($page-1)*$limit;
$stmt = $pdo->prepare("SELECT * FROM posts LIMIT ? OFFSET ?");
$stmt->bindValue(1,$limit,PDO::PARAM_INT);
$stmt->bindValue(2,$offset,PDO::PARAM_INT);
$stmt->execute();

Q53. How do you send email in PHP?

mail("to@example.com","Subject","Message","From: me@example.com");

(In practice, use PHPMailer or SMTP for reliability.)

Q54. Explain difference between require and autoload.

 require → loads file explicitly.
 autoload → loads class automatically when used (via spl_autoload_register).

Q55. Create a simple login script (concept).

if ($_SERVER['REQUEST_METHOD']=='POST') {
 $stmt = $pdo->prepare("SELECT * FROM users WHERE email=?");
 $stmt->execute([$_POST['email']]);
 $user = $stmt->fetch();
 if ($user && password_verify($_POST['pass'],$user['password'])) {
 $_SESSION['uid']=$user['id'];
 } else { echo "Invalid"; }
}

Q56. What are JWTs (JSON Web Tokens)?

Ans:
JWT is a compact, signed token used for authentication.
Structure: Header.Payload.Signature (Base64).

Q57. How to handle file download in PHP?

header("Content-Type: application/pdf");
header("Content-Disposition: attachment; filename=report.pdf");
readfile("report.pdf");

Q58. What is Cross-Site Request Forgery (CSRF)?

Ans:
A malicious site tricks a logged-in user into performing unwanted actions.
Prevention: CSRF tokens, SameSite cookies.

Q59. How to prevent SQL Injection in PHP?

 Use prepared statements with ? placeholders.
 Validate and sanitize input.

Q60. Explain difference between array_merge() and + operator.

 array_merge() → merges and reindexes keys.
 + → union of arrays; keys from left are preserved.

Q61. How to implement logout in PHP?

session_start();
session_unset();

session_destroy();
header("Location: login.php");

Q62. What is XSS (Cross-Site Scripting)?

Ans:
Injection of malicious scripts into webpages.
Prevention: htmlspecialchars(), CSP headers.

Q63. How do you upload multiple files?

foreach ($_FILES['photos']['tmp_name'] as $i=>$tmp) {
 move_uploaded_file($tmp, "uploads/".$_FILES['photos']['name'][$i]);
}

Q64. What is Composer in PHP?

Ans: Dependency manager for PHP.
Commands:

 composer init
 composer require vendor/package
 Autoload via vendor/autoload.php

Q65. Explain PSR standards.

Ans:

 PSR-1/2/12 → coding style.
 PSR-4 → autoloading standard.
 PSR-7 → HTTP messages.

Q66. What is MVC? Name PHP frameworks using it.

Ans:
MVC = Model View Controller architecture.
Frameworks: Laravel, Symfony, CodeIgniter, Yii.

Q67. Explain PHP error levels.

 E_NOTICE → minor issue.
 E_WARNING → non-fatal.
 E_ERROR → fatal.
 Config: error_reporting(E_ALL);

Q68. What is difference between unlink() and unset()?

 unlink("file.txt") → deletes file.
 unset($var) → deletes variable.

Q69. How to use Traits in PHP?

trait Logger { function log($m){ echo $m; } }
class Test { use Logger; }

Q70. Difference between abstract class and interface?

 Abstract class → can have implemented + abstract methods.
 Interface → only method signatures (until PHP 8, now may have defaults).

Q71. How to perform cURL request in PHP?

$ch = curl_init("https://api.example.com");
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$res = curl_exec($ch);
curl_close($ch);

Q72. Explain difference between public, protected, private.

 public → accessible everywhere.
 protected → within class & subclasses.
 private → within same class only.

Q73. Demonstrate exception chaining.

try {
 try { throw new Exception("Inner"); }
 catch (Exception $e) { throw new Exception("Outer",0,$e); }
} catch (Exception $e) {
 echo $e->getPrevious()->getMessage(); // "Inner"
}

Q74. How to schedule jobs in PHP?

Ans: Use Cron jobs in Linux or Task Scheduler in Windows to run PHP scripts periodically.

Q75. How to handle JSON API request & response?

$data = json_decode(file_get_contents("php://input"), true);
header("Content-Type: application/json");
echo json_encode(["ok"=>true,"received"=>$data]);

Q76. What is caching in PHP and why is it used?

Ans:
Caching stores frequently used data in memory/disk to reduce DB calls and speed up
response.
Examples: OPcache, Memcached, Redis.

Q77. How to enable OPcache in PHP?

Ans: In php.ini:

opcache.enable=1
opcache.memory_consumption=128

Q78. Explain difference between session and JWT authentication.

 Session → server stores session ID & data.
 JWT → self-contained token stored on client; scalable for APIs.

Q79. How to secure a REST API in PHP?

 Use HTTPS
 JWT or OAuth 2.0 for auth
 Rate limiting
 Input validation & sanitization

Q80. How to implement file-based caching in PHP?

$key = md5("page1");
$cache = "cache/$key.html";
if (file_exists($cache) && time()-filemtime($cache)<60) {
 readfile($cache);
 exit;
}
ob_start();
// dynamic content
$html = ob_get_clean();
file_put_contents($cache, $html);

Q81. What is the purpose of .htaccess in PHP projects?

Ans: Configure Apache settings: URL rewriting, redirects, access control, error pages.

Q82. How to rewrite URLs with .htaccess?

RewriteEngine On
RewriteRule ^product/([0-9]+)$ product.php?id=$1 [L]

Q83. Explain dependency injection in PHP.

Ans: Technique to provide required objects (dependencies) from outside rather than creating
them inside class. Improves testability & maintainability.

Q84. Demonstrate using PHP with AJAX.

// JS
fetch("data.php").then(r=>r.text()).then(console.log);
// data.php
echo "Hello from PHP";

Q85. What are PSR-7 HTTP messages?

Ans: Standard interface for HTTP requests & responses (used in frameworks like Slim,
Laravel).

Q86. How to use PHP sessions across subdomains?

Set cookie domain:

session_set_cookie_params(['domain'=>'.example.com']);
session_start();

Q87. Explain PHP’s garbage collection.

Ans: PHP automatically frees memory of unused variables. Cyclic references are cleared by
Garbage Collector (enabled via gc_enable()).

Q88. How to implement role-based access control (RBAC)?

 Store user role in DB/session.
 Check before action:

if ($_SESSION['role']!=='admin') die("Forbidden");

Q89. What is a design pattern? Name a few in PHP.

Ans: A reusable solution to common problems in OOP design.
Examples: Singleton, Factory, Strategy, Observer, MVC.

Q90. Show example of Singleton in PHP.

class DB {
 private static $inst;
 private function __construct() {}
 public static function get() {
 return self::$inst ??= new DB();
 }
}

Q91. How to upload images and generate thumbnails?

Use GD/Imagick:

$img = imagecreatefromjpeg("big.jpg");
$thumb = imagescale($img,150,150);
imagejpeg($thumb,"thumb.jpg");

Q92. How to send JSON response with HTTP status?

http_response_code(201);
header("Content-Type: application/json");
echo json_encode(["created"=>true]);

Q93. What is difference between REST and SOAP in PHP?

 REST → lightweight, JSON, stateless.
 SOAP → XML-based, strict, WS-* standards.

Q94. How to consume REST API in PHP?

$res = file_get_contents("https://api.github.com");

or with cURL for more control.

Q95. What is PHPUnit?

Ans: A unit testing framework for PHP. Used to test functions/classes automatically.

Q96. Show example PHPUnit test case.

class MathTest extends PHPUnit\Framework\TestCase {
 public function testAdd() {
 $this->assertEquals(4, 2+2);
 }
}

Q97. How to handle environment variables in PHP?

Use .env file with vlucas/phpdotenv package:

$dotenv = Dotenv\Dotenv::createImmutable(__DIR__);
$dotenv->load();
echo $_ENV['DB_USER'];

Q98. What is difference between static and self in PHP?

 self:: → refers to current class only.
 static:: → late static binding (refers to subclass if extended).

Q99. How to deploy PHP app securely?

 Disable display_errors in production.
 Use HTTPS.

 Apply least-privilege DB user.
 Harden php.ini (disable_functions).
 Use firewall, WAF, monitoring.

Q100. Summarize PHP 8+ key features.

 Union types
 Nullsafe operator ?->
 Named arguments
 Attributes/annotations
 JIT compilation
 Match expression

